Background Bisphosphonates decrease bone resorption and are commonly used to treat or prevent osteoporosis. However, the effect of bisphosphonates on their target cells remains enigmatic, since in patients benefiting from therapy, little change, if any, has been observed in the number of osteoclasts, which are the cells responsible for bone resorption.
Methods We examined 51 bone-biopsy specimens obtained after a 3-year, double-blind, randomized, placebo-controlled, dose-ranging trial of oral alendronate to prevent bone resorption among healthy postmenopausal women 40 through 59 years of age. The patients were assigned to one of five groups: those receiving placebo for 3 years; alendronate at a dose of 1, 5, or 10 mg per day for 3 years; or alendronate at a dose of 20 mg per day for 2 years, followed by placebo for 1 year. Formalin-fixed, undecalcified planar sections were assessed by bone histomorphometric methods.
Results The number of osteoclasts was increased by a factor of 2.6 in patients receiving 10 mg of alendronate per day for 3 years as compared with the placebo group (P<0.01).> the number of osteoclasts increased as the cumulative dose of the drug increased (r=0.50, P<0.001).> of these osteoclasts were giant cells with pyknotic nuclei that were adjacent to superficial resorption cavities. Furthermore, giant, hypernucleated, detached osteoclasts with 20 to 40 nuclei were found after alendronate treatment had been discontinued for 1 year. Of these large cells, 20 to 37% were apoptotic, according to both their morphologic features and positive findings from in situ end labeling.
Conclusions Long-term alendronate treatment is associated with an increase in the number of osteoclasts, which include distinctive giant, hypernucleated, detached osteoclasts that are undergoing protracted apoptosis.